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Pulse Shape-Aided Multipath Parameter Estimation
for Fine-Grained WiFi Sensing

Ke Xu, Rui Zhang , and He Chen , Member, IEEE

Abstract— Due to the finite bandwidth of practical wireless
systems, one multipath component can manifest itself as a discrete
pulse consisting of multiple taps in the digital delay domain.
This effect is called channel leakage, which complicates the
multipath parameter estimation. In this study, we propose a
new algorithm to estimate multipath parameters, including delay,
angle of arrival (AOA), and angle of departure (AOD) of leaked
channels. This is accomplished by leveraging the knowledge
of pulse shaping functions, a technique that can be applied
to enhance the precision of WiFi sensing. More specifically,
we formulate the channel impulse response (CIR) between a
transmit and a receive antenna as a linear combination of a set
of overcomplete basis vectors, each corresponding to a different
delay. Considering the limited number of paths in physical
environments, we formulate the multipath parameter estimation
as a group sparse recovery problem. We develop a two-stage
approach based on variational expectation maximization (VEM)
to solve the formulated problem. In the first stage, we estimate
the sparse vectors and determine the number of physical paths
and their associated delay parameters from the positions of the
nonzero entries. In the second stage, we use Newton’s method
to estimate the AOA and AOD of each path. The Cramér-
Rao lower bound (CRLB) for multipath parameter estimation
is derived for performance evaluation. Simulation results show
that our algorithm can achieve superior estimation accuracy in
multipath parameters compared to two benchmarking schemes
and approach the CRLB.

Index Terms— Channel leakage, multipath parameter estima-
tion, pulse shaping, variational expectation maximization, WiFi
sensing.

I. INTRODUCTION

IN THE past years, WiFi has evolved beyond its initial
role of providing connectivity among wireless devices to

also encompass the capability of sensing surrounding envi-
ronments [2], [3], [4]. This new trend has facilitated various
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applications such as indoor localization [5], [6], human gesture
recognition [7], [8], and vital sign detection [9], [10], making
WiFi a key enabling technology in the era of the Internet of
things. In current WiFi systems, orthogonal frequency division
multiplexing (OFDM) is used to combat frequency-selective
fading [11]. The data symbols are transmitted in parallel on
multiple orthogonal subcarriers. Each symbol experiences flat
fading on its subcarrier, and the fading coefficient is the
channel frequency response (CFR). In the sensing area, the
CFR is often referred to as channel state information (CSI).
Recently, several tools have been developed to extract the
CSI from commodity WiFi devices [12], [13], [14]. These
complex-valued CSI can provide fine-grained information of
the environment and has been widely used in WiFi sensing.

In the field of indoor localization, the path delay is a key
parameter to determine the position of a target because it can
reflect the distance between the target and a WiFi device.
Ideally, the target position can be uniquely determined in a
polar coordinate system by the delay and angle of arrival
(AOA) of the direct path with respect to the WiFi device.
However, it is nontrivial to obtain an accurate estimate of
the path delays from CSI. In wireless systems, pulse shaping
and matched filtering are performed at the transmitter and the
receiver, respectively. Due to the limited system bandwidth,
when the delay of a physical path is a non-integer multiple of
the sampling period, the multipath component in the discrete
delay domain will manifest itself as a pulse consisting of
multiple taps, instead of a single tap. This effect, inherent in
digital wireless systems, is called channel leakage [15], [16],
[17], [18]. An example of the channel impulse response (CIR)
with the leakage effect is illustrated in Fig. 1, in which the
system has a sampling period of T = 50ns while a path arrives
at τ = 20ns. Consequently, a pulse consisting of 16 taps is
produced.1

Based on the above observation, a significant problem arises
if two taps within the same pulse are recognized as two
physical paths with distinct delays. This situation can lead to
severe degradation of the localization accuracy, especially in
multipath-assisted applications such as [19] and [20]. Although
existing subspace-based methods [21], [22], [23] can directly
estimate the delay parameters from the frequency domain and
circumvent the above issue, these algorithms rely on the under-
lying assumption of using an ideal pulse shaping filter with a

1It can be observed that around half of the taps are shifted to the end
of the CIR. We will provide a detailed explanation of this phenomenon in
Section II-A.
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Fig. 1. Illustration of the channel leakage effect with a path delay of 20 ns
and a sampling period of 50 ns. A truncated raised-cosine filter with a roll-off
factor of 0.05 and a length of 16 is used.

flat frequency response on data subcarriers. However, practical
pulse shaping functions have a finite time duration, incurring
ripples in the passband and thus breaking the fundamental
assumption of those subspace-based methods. In [24], the
authors developed an atomic norm-based approach to estimate
the channel and further obtain the multipath parameters by
incorporating the effect of pulse shaping. However, their
algorithm focuses on single-carrier systems and also imposes
stringent requirements on the pulse parameters, largely limit-
ing their practical applications.

In this study, we leverage the knowledge of the pulse shape
and devise a new algorithm to estimate multipath parameters
from the CSI that can be extracted from commodity WiFi
devices. Since we are examining a multiple-input multiple-
output (MIMO) WiFi system, it is necessary to estimate the
AOA and AOD of each path, in addition to the delay param-
eter. Recognizing that the CIR can be seen as a superposition
of multiple pulses shifted by different delays, we discretize
the delay parameter into a set of grid points and formulate
a group sparse recovery problem using overcomplete basis
vectors composed of digital pulses that are shifted by the
delays in the grid. To estimate the multipath parameters,
we employ a two-stage variational expectation maximization
(VEM) method. The main contributions can be summarized
as follows:

• We formulate a group sparse recovery problem by
expressing the CIRs of all transmit–receive antenna pairs
as linear combinations of pulse shaping functions shifted
by the delay grid points, in which the sparse vectors
exhibit the same sparsity pattern (i.e., the same positions
of nonzero entries). With this formulation, the delay
parameters and the number of paths can be readily iden-
tified from the nonzero positions of the sparse vectors.

• We propose a two-stage VEM-based algorithm to solve
the group sparse recovery problem. In the first stage,
we assign a common Gaussian prior distribution to the
path amplitudes of a grid point of all transmit–receive
antenna pairs, in which the sparsity pattern is controlled

by the variance parameter. The posterior distribution of
the path amplitudes is obtained iteratively. Upon conver-
gence, the delay parameters can be determined from the
sparsity pattern. In the second stage, we fix the number
of paths obtained from the previous stage and further
estimate the AOA and AOD from the path amplitudes
via Newton’s method within the VEM framework. For
performance evaluation, we derive the Cramér-Rao lower
bound (CRLB) for the estimator, which incorporates the
effect of pulse shaping.

• We finally evaluate the performance of the proposed
algorithm through simulations and compare it with two
existing schemes. Simulation results show that the pro-
posed scheme achieves superior performance in multipath
parameter estimation and can asymptotically approach the
CRLB.

It is worth noting that the effect of pulse shaping and
the problem of high-resolution delay estimation have been
extensively investigated in the existing literature. In [15],
[16], [17], and [18], the authors studied the pulse shaping
effect and estimated the channel matrices as a whole, instead
of focusing on specific multipath parameters. By leveraging
the knowledge of the pulse shape, orthogonal matching pur-
suit (OMP)-based methods have been proposed in [25], [26]
and [27], [28] for single-antenna and multi-antenna systems,
respectively. Nevertheless, as shown in our previous work [1],
the OMP-based method achieves inferior performance due
to its greedy nature, even when the number of paths is
given. In [29], [30], [31], and [32], super-resolution delay
estimation algorithms based on pulse shape knowledge have
been developed to overcome the low-precision limitation due
to the restricted sampling rate. However, these algorithms are
limited to single-antenna systems and do not incorporate the
estimation of AOA and AOD. While joint delay and AOA
estimation has been studied in [33], [34], and [35], the pulse
shaping effect is not considered in these works. In [36], the
authors subtly incorporated the knowledge of the pulse shape
and introduced a space-alternating generalized expectation
maximization (SAGE) algorithm to estimate the parameters
of each path. In [37], a sparse variational Bayesian (VB)
extension of SAGE was proposed. However, in the context
of WiFi sensing, such as indoor environments, the multipath
delay parameters tend to be closely spaced. As a result,
these algorithms cannot distinguish each individual path from
the highly overlapped pulses in the delay domain, especially
when dealing with a relatively large number of paths. This
issue results in a significant degradation in the estimation
performance. We will further elaborate on the limitations of
the two approaches in the simulation section of this paper.

The rest of the paper is organized as follows. In Section II,
we introduce the MIMO WiFi channel model that incorporates
the effect of pulse shaping and then formulate the group sparse
recovery problem. In Section III, we elaborate on the two-stage
VEM-based algorithm to estimate the channel parameters.
In Section IV, simulations are conducted to validate the
effectiveness of the proposed algorithm. Finally, we conclude
the paper in Section V.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 15,2024 at 02:53:00 UTC from IEEE Xplore.  Restrictions apply. 



6118 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 10, OCTOBER 2024

Notations: Boldface uppercase and lowercase letters repre-
sent matrices and column vectors, respectively. The (m, n)-th
entry of matrix A is denoted by Am,n, and the n-th entry of
vector a is denoted by an. R (C), RN (CN ), and RM×N

(CM×N ) denote the set of real (complex)-valued scalars,
vectors of size N , and matrices of size M ×N , respectively.
For a matrix A, the notations AT , A∗, AH , and A−1 denote
its transpose, conjugate, conjugate transpose, and inverse,
respectively. tr(·) denotes the trace of a square matrix. | · |
denotes the magnitude of a complex number, the determinant
of a matrix, or the cardinality of a set. diag(a) is a diagonal
matrix with the entries in a on the diagonal, and Diag(A) is a
diagonal matrix with the diagonal entries in A on the diagonal.
IN is an identity matrix of size N × N . ⊙ is the Hadamard
product of two matrices. For two real symmetric matrices A
and B, A ⪰ B indicates that A−B is positive semidefinite.
∥·∥2 is the Euclidean norm of a vector. p(x; a) is the prob-
ability density function of x with parameter a, and p(x|y)
is the probability density function of x conditioned on y.
exp(·) is the exponential function with base e. ln(·) and log2(·)
are the natural logarithm function and the binary logarithm
function, respectively. δ(·) is the Dirac delta function. Γ(·) is
the Gamma function. ⊗ denotes the convolution operation.
CN (x; µ,Σ) = π−N |Σ|−1 exp

(
−(x− µ)HΣ−1(x− µ)

)
represents the probability density function of a complex
Gaussian-distributed random vector x of length N , with
mean µ and covariance matrix Σ. Gamma(x; a, b) =
baxa−1 exp(−bx)/Γ(a) represents the probability density
function of a Gamma-distributed random variable with shape
parameter a and rate parameter b. E[ · ]p(·) denotes the expec-
tation with respect to distribution p(·). Re{·} and Im{·}
represent the real and imaginary parts of the argument, respec-
tively. For a scalar y ∈ R and a vector x ∈ RN , where y
is a function of x, ∂y/∂x ∈ RN is a vector with the n-th
entry given by ∂y/∂xn. For a scalar z ∈ R and two vectors
x ∈ RM and y ∈ RN , where z is a function of x and y,
∂2z/∂x∂yT ∈ RM×N is a matrix with the (m, n)-th entry
given by ∂2z/∂xm∂yn. For two vectors x ∈ RM and y ∈ RN ,
where y is a function of x, ∂y/∂xT ∈ RN×M is a matrix with
the (n, m)-th entry given by ∂yn/∂xm.

II. CHANNEL MODEL AND PROBLEM FORMULATION

In this section, we first introduce the WiFi channel model
which takes into account the effect of pulse shaping, and
explain how the channel delay parameters are typically used in
WiFi sensing. Then, we leverage the knowledge of the pulse
shape to formulate multipath parameter estimation as a group
sparse recovery problem.

A. Channel Model

We consider a WiFi system with M transmit antennas and
N receive antennas. The physical multipath channel between
the m-th transmit antenna and the n-th receive antenna in the
delay domain can be expressed as

hp
m,n(τ) =

L∑
ℓ=1

αm,n,ℓδ(τ − τℓ), (1)

where m ∈ {1, · · · , M}, n ∈ {1, · · · , N}, L is the number
of paths, and αm,n,ℓ and τℓ are the complex amplitude and
the delay of the ℓ-th path, respectively. In the above equation,
we assume that the delay parameters of a physical path are
the same for all transmit–receive antenna pairs because the
antenna spacing on a WiFi device is much smaller than the
propagation distance of the signal and thus can be ignored.
In addition, αm,n,ℓ can be further written as

αm,n,ℓ = α1,1,ℓ exp
(
−j2π(n− 1)d sin θℓ

λ

)
× exp

(
−j2π(m− 1)d sin φℓ

λ

)
, (2)

where θℓ and φℓ are the AOA and AOD of the ℓ-th path, d
is the spacing between two adjacent antennas, and λ is the
wavelength of the signal. A composite channel incorporating
the effect of pulse shaping is given by

hm,n(τ) = hp
m,n(τ)⊗ gt(τ)⊗ gr(τ) = hp

m,n(τ)⊗ g(τ)

=
L∑

ℓ=1

αm,n,ℓg(τ − τℓ), (3)

where gt(τ) and gr(τ) are the pulse shaping filter at the
transmitter and the matched filter at the receiver, respectively,
and g(τ) ≜ gt(τ) ⊗ gr(τ). In this paper, we consider a
truncated raised-cosine pulse function,2 i.e.,

g(τ) = sinc
( τ

T

) cos
(

πρτ
T

)
1−

(
2ρτ
T

)2 w

(
τ

LpT

)
, (4)

where T is the sampling period, ρ is the roll-off factor,
sinc(τ) = sin(πτ)/(πτ) is the sinc function, and w(τ) is
a window function such that w(τ) = 1 for |τ | ≤ 1 and
w(τ) = 0 otherwise. Hence, 2LpT is the nonzero duration
of the pulse function with Lp denoting the number of taps
in half of a digital pulse. Discretizing the composite channel
in (3), we have

hm,n,r = hm,n(rT ) =
L∑

ℓ=1

αm,n,ℓg(rT − τℓ), (5)

where r ∈ {1, · · · , R} is the delay index, and R corresponds
to the maximum delay spread of the composite channel. The
leakage effect is evident from (5): a physical path produces
a single tap in the digital delay domain only when the path
delay is an integer multiple of the sampling period; otherwise,
the energy of the path will leak to multiple taps in a pulse,
making it nontrivial to figure out the exact delay.

For a WiFi OFDM system with K subcarriers, the frequency
response of the composite channel on subcarrier k is given by

h̃m,n,k =
R∑

r=1

hm,n,r exp
(
−j2π(k − 1)(r − 1)

K

)
, (6)

where k ∈ {1, · · · , K}. In practical WiFi systems, only a sub-
set of subcarriers are used to transmit data/pilot symbols. For
example, in IEEE 802.11a, the 1-st subcarrier is left unused

2We remark that the proposed multipath estimation framework also applies
to other pulse functions.
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due to the strong DC interference, and subcarriers indexed
from 28 to 38 are also excluded to avoid interference from
neighboring channels. In this paper, we will estimate multipath
parameters from the CSI on those subcarriers available for
data/pilot transmission.

It is important to note that the form of the CIR given in (5),
which contains the absolute delay parameters of the physical
paths, is not practically available by performing inverse Fourier
transform on the measured CSI in WiFi systems. Instead, only
relative delay information can be obtained from the CSI. Let
us use a simple signal model to explain the reason in the
following. Denote by s = [s1, · · · , sNs

]T the preamble in
a WiFi packet used to estimate the CSI, which has a good
autocorrelation property, i.e.,∑

n

sns∗n−m =

{
1, if m = 0,

0, otherwise.
(7)

We assume that there is only one physical path in the
channel, and the path delay τ is not an integer multiple
of the sampling period T . As a consequence, multiple taps
are produced in the delay domain. We denote the composite
CIR by h = [h1, · · · , hNh

]T . Ignoring the additive noise, the
received signal can be written as

yn =
∑

k

sn−khk. (8)

At the receiver, packet detection is performed by
cross-correlating the received signal with the preamble:

rm =
∑

n

yns∗n−m =
∑

n

∑
k

sn−khks∗n−m

=

{
hk, if m = k,

0, otherwise,
(9)

which actually indicates that rm = hm. Then, the transmit-
ted signal is considered to arrive at the receiver at m0 =
arg maxm|rm| = arg maxm|hm|, corresponding to the tap
with the largest CIR amplitude. In WiFi systems, only the
received signals after this time instant m0 are used for CSI
estimation. Consequently, the delay estimated from the CSI is
τ̂ = τ −m0T , implying that the absolute delay information is
lost, and one can only recover the relative delay of the paths
from the CSI. This issue is also reflected in Fig. 1, where
the tap with the largest amplitude is located at the origin,
and the taps preceding this point are shifted to the end of the
CIR due to the use of cyclic prefix (CP) in WiFi OFDM.
Similar illustrations can also be found in [38]. To address
the above problem, one may consider using time stamps that
record the start time of transmission to calculate the absolute
delay. However, the reliability of this method is often hindered
by the lack of perfect synchronization between the transmitter
and the receiver [5], [20]. Moreover, the packet detection
process introduces an additional delay, which is even larger
than the propagation delay of the signal, making it challenging
to determine the exact time when the signal arrives [39]. For
the above reasons, relative delay and angle-based approaches
are preferred in WiFi sensing systems. Hereafter, for the for-
mulation of the delay estimation problem, we do not account

for the delay shift shown in Fig. 1, because we can always
shift the taps at the end of the CIR back to the beginning.

B. Problem Formulation

Denote hm,n = [hm,n,1, · · · , hm,n,R]T and h̃m,n =
[h̃m,n,1, · · · , h̃m,n,K ]T . The relationship between hm,n and
h̃m,n can be written as

h̃m,n = F1:Rhm,n, (10)

where F1:R ∈ CK×R is a partial discrete Fourier transform
(DFT) matrix composed of the first R columns of a complete
DFT matrix F ∈ CK×K , with the (i, j)-th entry of F
given by Fi,j = exp(−j2π(i − 1)(j − 1)/K). As mentioned
in Section II, only a portion of the frequency response is
available. Therefore, the measured CSI can be written as

ym,n = FK,1:Rhm,n + nm,n, (11)

where ym,n ∈ C|K| is the measured CSI, K is the index set of
subcarriers used for data/pilot transmission, FK,1:R ∈ C|K|×R

is a matrix composed of |K| rows of F1:R corresponding
to the used subcarriers, and nm,n ∈ C|K| is the complex
Gaussian-distributed measurement error with zero mean and
variance σ2.

Taking into account the knowledge of the pulse shape, hm,n

can be further written as

hm,n = Aαm,n, (12)

where A ∈ RR×L and its (r, ℓ)-th entry is given by Ar,ℓ =
g(rT−τℓ), and αm,n = [αm,n,1, · · · , αm,n,L]T . Motivated by
the expression in (12), we can discretize the delay parameter
into a set of fine-grained grid points as {pTg}P

p=1, where Tg is
the resolution of the grid, P is the number of grid points, and
PTg is the maximum potential delay spread of the physical
paths. Then, we can construct a dictionary matrix A′ ∈ RR×P

with its (r, p)-th entry given by A′r,p = g(rT −pTg), and (12)
can be approximated as

hm,n ≈ A′α′m,n, (13)

where α′m,n = [α′m,n,1, · · · , α′m,n,P ]T consists of the ampli-
tudes of the potential paths with the delays in the grid.
In (13), when the delay of a path falls on a specific grid
point, the corresponding entry in α′m,n will be nonzero. Due
to the limited number of paths in the physical environment,
there are only a small fraction of nonzero entries in α′m,n.
In other words, α′m,n is sparse. In addition, since the channels
of all transmit–receive antenna pairs share the same delay
parameters, the sparse vectors {α′m,n}

M,N
m=1,n=1 have the same

sparsity pattern (i.e., the same positions of nonzero entries).
Substituting (13) into (11), we have

ym,n ≈ FK,1:RA′α′m,n + nm,n = Bα′m,n + nm,n, (14)

where B ≜ FK,1:RA′ ∈ C|K|×P . Next, our objective is
to recover α′m,n from ym,n given B for all m and n, and
determine the delay parameters from the positions of their
nonzero entries. After the delay parameters are obtained,
we can further estimate the AOA and AOD parameters from
the path amplitudes.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 15,2024 at 02:53:00 UTC from IEEE Xplore.  Restrictions apply. 



6120 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 10, OCTOBER 2024

III. VEM-BASED TWO-STAGE MULTIPATH PARAMETER
ESTIMATION

In this section, we first provide a brief overview of the
VEM methodology, and then propose a two-stage VEM-based
algorithm to estimate the multipath parameters.

A. An Overview of VEM

VEM is an iterative algorithm to approximate the maximum
likelihood estimation [40]. By imposing statistical properties
on the sparse signals, the common sparsity pattern shared by
all transmit–receive antenna pairs can be readily exploited.
Furthermore, the VEM algorithm offers a systematic frame-
work for estimating both random and nonrandom parameters
in a probabilistic model, making it particularly suitable for our
multipath parameter estimation problem.

The VEM involves three types of quantities: the observation
y, the hidden variable z, and the unknown parameter t. z is
treated as a random variable, for which a posterior distribution
is derived based on its prior distribution and the likelihood
function. On the other hand, t is considered deterministic, and
only a point estimate is obtained using the rule of maximum
likelihood. According to Bayes’ theorem, the posterior distri-
bution of z can be written as

p(z|y; t) =
p(z; t)p(y|z; t)

p(y; t)
, (15)

where

p(y; t) =
∫

p(z; t)p(y|z; t)dz (16)

is the marginal likelihood function that should be maximized
to estimate t. In practice, it is often difficult to directly
compute the integral in p(y; t). Alternatively, the VEM derives
a tractable approximation of p(z|y; t), denoted by q(z), based
on the following principle. Noting that the logarithm of p(y; t)
can be written as the summation of two terms:

ln p(y; t) = KL(q||p) + F (q, t), (17)

where KL(q||p) is the Kullback–Leibler (KL) divergence
between q(z) and p(z|y; t):

KL(q||p) = −
∫

q(z) ln
(

p(z|y; t)
q(z)

)
dz, (18)

and F (q, t) is expressed as

F (q, t) =
∫

q(z) ln
(

p(y, z; t)
q(z)

)
dz. (19)

Since KL(q||p) is nonnegative [41], F (q, t) can be regarded
as a lower bound of ln p(y; t). Hence, both q(z) and t can be
determined by maximizing this lower bound. However, when
z consists of multiple components, e.g., z = [zT

1 , · · · , zT
Q]T ,

maximizing (19) with respect to q(z) can be still challenging.
In this case, a variational approach can be adopted, in which
q(z) is factorized as

q(z) =
Q∏

q=1

q(zq). (20)

In other words, the components are assumed to be mutually
independent. This factorization allows computing the posterior
distribution of one component at a time while keeping the
others fixed.

In summary, the VEM algorithm iteratively executes a vari-
ational expectation (E)-step and a maximization (M)-step to
maximize (19) with respect to {q(zq)}Q

q=1 and t, respectively,
until convergence. The update rules for the two steps are
given by

ln q(zq) = ⟨ln p(y, z; t)⟩q(z∼q) + const., (21)

and

t = arg max
t
⟨ln p(y, z; t)⟩q(z), (22)

where we use ⟨ · ⟩q(·) to denote E[ · ]q(·) for simplicity,
q(z∼q) ≜

∏
q′ ̸=q q(zq′), and “const.” represents a constant

irrelevant to zq . The detailed derivations of (21) and (22) can
be found in [40] and are omitted in this paper. Next, we will
develop a two-stage framework for the pulse shape-aided mul-
tipath parameter estimation, where the VEM is employed in
both stages to estimate the delay and AOA/AOD, respectively.

B. Stage One: Delay Estimation

In this part, we establish the probabilistic model and esti-
mate the delay parameters. To proceed, we assign a complex
Gaussian prior distribution to {α′m,n}

M,N
m=1,n=1:

p(α′|γ)

=
M∏

m=1

N∏
n=1

p(α′m,n|γ) =
M∏

m=1

N∏
n=1

P∏
p=1

CN (α′m,n,p; 0, γ−1
p ),

(23)

where we denote α′ = [(α′1,1)
T , · · · , (α′M,N )T ]T , and γ =

[γ1, · · · , γP ]T consists of the precision parameters (i.e., the
inverse of the variance) of α′m,n,p for all p. Since γ is also
unknown, we adopt a Gamma hyperprior model because it is
the conjugate prior for the Gaussian distribution in (23) and
can facilitate the inference of the posterior distribution [42]:

p(γ) =
P∏

p=1

p(γp) =
P∏

p=1

Gamma(γp; a, b), (24)

where we use p(γ) and p(γp) to represent p(γ; a, b) and
p(γp; a, b), respectively, for simplicity. In general, the param-
eters a and b should take small values to make the hyperprior
model non-informative. With the above prior distributions, the
sparsity pattern of α′m,n can be reflected from the estimate of
γ. Specifically, for all m and n, when γp is large, α′m,n,p is
forced to be around zero; when γp is small, α′m,n,p is likely to
be large. Therefore, we can find the delay of a path from the
position where γp takes a small value. We use a γ common
to the CSI of all transmit–receive antenna pairs to exploit
the fact that all the sparse vectors share the same sparsity
pattern, which is referred to as group sparsity. It is worth
mentioning that the prior model in (23) is used only to enhance
the sparsity, and the actual distributions of the multipath
amplitudes are not necessarily Gaussian and can be correlated

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 15,2024 at 02:53:00 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: PULSE SHAPE-AIDED MULTIPATH PARAMETER ESTIMATION FOR FINE-GRAINED WiFi SENSING 6121

through a common αℓ across different antennas (see (2)).
We will temporarily ignore this correlation when estimating
the delay parameters and reconsider it when estimating the
AOA and AOD.

On the other hand, based on (14), the likelihood function
for α′ is

p(y|α′) =
M∏

m=1

N∏
n=1

p(ym,n|α′m,n)

=
M∏

m=1

N∏
n=1

CN
(
ym,n;Bα′m,n, βI|K|

)
, (25)

where y = [yT
1,1, · · · ,yT

M,N ]T , β = 1/σ2, and we denote
p(y|α′) ≜ p(y|α′; β) and p(ym,n|α′m,n) ≜ p(ym,n|α′m,n; β)
for simplicity. The joint probability distribution of all the
involved variables can be written as

p(y, α′, γ) = p(γ)p(α′|γ)p(y|α′)

= p(γ)
M∏

m=1

N∏
n=1

p(α′m,n|γ)p(ym,n|α′m,n). (26)

With the probabilistic model established, we need to estimate
the posterior distributions of {α′m,n}

M,N
m=1,n=1 and γ from (26).

Since the posterior distributions are difficult to compute
directly, we use the VEM method introduced in Section III-A
to approximate them. As suggested in (20), we factorize the
joint posterior distribution into the following form:

p(α′, γ|y) ≈ q(α′, γ) =

(
M∏

m=1

N∏
n=1

q(α′m,n)

)(
P∏

p=1

q(γp)

)
.

(27)

It is worth noting that the delay estimation stage does not
involve unknown deterministic parameters. Therefore, we only
need to use a variational E-step to compute the posterior
distributions in (27). Based on (21), the posterior distribution
of each α′m,n can be derived as

ln q(α′m,n)
= ⟨ln p(α′m,n|γ)⟩q(γ) + ln p(ym,n|α′m,n) + const.

= −
P∑

p=1

⟨γp⟩|α′m,n,p|2 − β∥ym,n −Bα′m,n∥22 + const.

= −(α′m,n − µm,n)HΣ−1
m,n(α′m,n − µm,n) + const., (28)

where we omit the distribution in the subscript of ⟨γp⟩ for
brevity, and the value of ⟨γp⟩ will be specified later in this
section. The expressions of Σm,n and µm,n are

Σm,n =
(
βBHB + Γ

)−1
,

µm,n = βΣm,nBHym,n, (29)

where Γ = diag (⟨γ⟩) and ⟨γ⟩ = [⟨γ1⟩, · · · , ⟨γP ⟩]T . From the
last step of (28), we can identify that the posterior distribution
of α′m,n is Gaussian with mean µm,n and covariance matrix
Σm,n. Next, the posterior distribution of each γp can be
derived as

ln q(γp)

= ln p(γp) +
M∑

m=1

N∑
n=1

⟨ln p(α′m,n,p|γp)⟩q(α′m,n,p) + const.

= (a− 1) ln γp − bγp +
M∑

m=1

N∑
n=1

(
ln γp − γp⟨|α′m,n,p|2⟩

)
+ const.

= (ãp − 1) ln γp − b̃pγp + const., (30)

with

ãp = a + MN,

b̃p = b +
M∑

m=1

N∑
n=1

⟨|α′m,n,p|2⟩, (31)

where ⟨|α′m,n,p|2⟩ = |µm,n,p|2+Σm,n,p,p. The last step of (30)
indicates that q(γp) is a Gamma distribution with the shape
parameter ãp and rate parameter b̃p. The posterior expectation
of γp is then computed as ⟨γp⟩ = ãp/b̃p.

In the delay estimation stage, we iteratively compute
the posterior distributions of {α′m,n}

M,N
m=1,n=1 and {γp}P

p=1

using (28) and (30), respectively, until convergence. During the
iterations, we can prune some basis vectors in the dictionary
matrix whose corresponding values of ⟨γp⟩ are significantly
large. Specifically, if ⟨γp⟩ is larger than a threshold, we remove
the p-th column of B and the p-th entry of α′m,n for all m and
n. After the algorithm converges, the posterior mean µm,n is
treated as the estimate of α′m,n, which will be used in the AOA
and AOD estimation stage, and the grid points corresponding
to the remaining basis vectors are treated as the estimate of
delay parameters. If the number of the remaining basis vectors
exceeds a predetermined value Lmax, we select a subset of
Lmax delay estimates with the smallest values of ⟨γp⟩. Then,
we further choose the delay estimates that are not adjacent in
the delay grid points. This selection approach is driven by the
observation that the columns of the dictionary matrix A′ are
highly correlated because they are constructed from the pulse
shaping function shifted by closely spaced delay grid points.
As a consequence, there is a high possibility that multiple
delay estimates with adjacent values in the grid correspond to
the same physical path. Hence, in such a scenario, we only
retain the delay estimate associated with the smallest value
of ⟨γp⟩. All the above procedures for delay estimation are
summarized in Algorithm 1.

Remark 1: In Algorithm 1, the selection of η entails a
tradeoff between the estimation accuracy and the computa-
tional complexity. Specifically, setting η to a smaller value
increases the risk of deleting the basis vector corresponding to
a true physical path, potentially compromising the estimation
performance. For the choice of Lmax, since each physical
path could generate multiple delay grid points with non-zero
amplitudes due to the correlation between the basis vectors in
A′, the value of Lmax should be set as several times of the
typical number of physical paths in the environment. However,
the delay estimation performance is robust to variations in
the specific values of Lmax, which will be shown in detail in
Section IV.

Remark 2: In practical WiFi systems, the design parameters
of the pulse shaping function may not be publicly available
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Algorithm 1 Stage One: Delay Estimation

1: Input: Measured CSI {ym,n}M,N
m=1,n=1, hyperparameters

a and b, delay grid resolution Tg, threshold for deleting a
basis vector η, and maximum number of paths Lmax.

2: Output: Delay estimates T .
3: Initialization: The delay estimates T =
{Tg, · · · , PTg} ≜ {τ̂1, · · · , τ̂P }, the matrix B, and
⟨γp⟩ = a/b for all p.

4: while stopping criterion not met do
5: Compute the posterior distribution of {α′m,n}

M,N
m=1,n=1

using (28).
6: Compute the posterior distribution of {γp}P

p=1

using (30).
7: Delete {τ̂p : ⟨γp⟩ > η min{⟨γp′⟩}|T |p′=1} from T .
8: Reconstruct B and α′ using T .
9: end while

10: if |T | > Lmax then
11: Retain only Lmax elements in T with small values of

⟨γp⟩.
12: end if
13: Divide T into multiple subsets such that the elements in

each subset take adjacent values in the delay grids.
14: Reconstruct T using τ̂p’s with the smallest values of ⟨γp⟩

in their respective subsets.

and need to be estimated. In a raised-cosine pulse shap-
ing function, the only potentially unknown design parameter
is the roll-off factor ρ. We will show in the simulations
that when there is 10% error in ρ, our delay estimation
algorithm achieves similar performance to the scenario without
errors.

Complexity analysis of Algorithm 1: The computational
complexity of Algorithm 1 primarily arises from the matrix
inverse in Σm,n, which is of order O(P 3) in each itera-
tion. Noting that Algorithm 1 is closely related to sparse
Bayesian learning (SBL) in [43], [44], and [45], several
existing works can be applied to reduce the complexity [46],
[47], [48]. More recently, a covariance-free implementation
of SBL has been developed in [49]. The authors devised an
unbiased estimator for the diagonal entries of the covariance
matrix using a small number of probe vectors. The poste-
rior expectation of |α′m,n,p|2 can then be computed based
on this estimator (see (31)). Moreover, the construction of
probe vectors and the computation of µm,n in (29) can be
efficiently accomplished by solving a group of linear systems
in parallel using the conjugate gradient (CG) method [50].
Taking into account the structure of matrix B, the complexity
of the covariance-free SBL per iteration can be decreased to
O ((LpP + K log2 K)U(D + MN)), where U is the number
of CG steps and D is the number of probe vectors. While
important, the reduction of computational complexity is out of
the scope of this paper. As a result, we will not demonstrate
fast realizations of the proposed algorithm in the simulation
section.

C. Stage Two: AOA and AOD Estimation

In this part, we estimate the AOA and AOD parameters
based on {α′m,n}

M,N
m=1,n=1 obtained in the previous stage.

Substituting (2) into (14), we have3

ym,n = BDm,nα0 + nm,n, (32)

where α0 = [α1, · · · , αL]T with αℓ ≜ α1,1,ℓ (ℓ = 1, · · · , L),
Dm,n = diag (dm,n) ∈ CL×L, and the ℓ-th entry of dm,n is

dm,n,ℓ = exp
(
−j2π(n− 1)d sin θℓ

λ

)
× exp

(
−j2π(m− 1)d sin φℓ

λ

)
. (33)

Following a form similar to (23) and (24), we assign a
complex Gaussian prior to α0:

p(α0|γ0) =
L∏

ℓ=1

CN (αℓ; 0, γ−1
0,ℓ ), (34)

where γ0 = [γ0,1, · · · , γ0,L]T , and assign a Gamma prior to
γ0:

p(γ0) =
L∏

ℓ=1

Gamma(γ0,ℓ; a, b). (35)

Analogous to (25), the likelihood function for α0 can be
written as

p(y|α0; θ, φ) =
M∏

m=1

N∏
n=1

p(ym,n|α0; θ, φ)

=
M∏

m=1

N∏
n=1

CN (ym,n;BDm,nα0, βI|K|),

(36)

where θ = [θ1, · · · , θL]T and φ = [φ1, · · · , φL]T , and we
include them in the distributions to indicate that they are
unknown parameters to be estimated. Combining (34), (35)
and (36), the joint probability distribution is expressed as

p(y, α0, γ0; θ, φ)

= p(γ0)p(α0|γ0)
M∏

m=1

N∏
n=1

p(ym,n|α0; θ, φ). (37)

In the current AOA and AOD estimation stage, we treat α0 and
γ0 as hidden variables and derive their posterior distributions
in the variational E-step, and treat θ and φ as unknown
parameters and compute their point estimates in the M-step.
In fact, α0 and γ0 can be considered as a refined version of
α′m,n and γ in the previous stage. Meanwhile, we extract the
linear phase shifts in the amplitudes along the antenna array
and accordingly estimate the AOA and AOD in this refining
process.

3Note that we assume the number of paths has been determined from the
delay estimation stage. As a result, there are L remaining columns in B and
L entries in α0, and αℓ corresponds to the amplitude of a true physical path.
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Following the update rule of the variational E-step in (21),
the posterior distribution of α0 is derived as

ln q(α0)

= ⟨ln p(α0|γ0)⟩q(γ0)
+

M∑
m=1

N∑
n=1

ln p(ym,n|α0; θ, φ)

+ const.

= −
L∑

ℓ=1

⟨γ0,ℓ⟩|αℓ|2 −
M∑

m=1

N∑
n=1

β∥ym,n −BDm,nα0∥22

+ const.

= −(α0 − µ0)
HΣ−1

0 (α0 − µ0) + const., (38)

with

Σ0 =

(
M∑

m=1

N∑
n=1

βDH
m,nBHBDm,n + Γ0

)−1

,

µ0 =
M∑

m=1

N∑
n=1

βΣ0DH
m,nBHym,n, (39)

where Γ0 = diag(⟨γ0⟩) with ⟨γ0⟩ = [⟨γ0,1⟩, · · · , ⟨γ0,L⟩]T .
Therefore, the posterior distribution of α0 is Gaussian with
mean µ0 and covariance matrix Σ0. Next, the posterior
distribution of γ0,ℓ (ℓ = 1, · · · , L) is derived as

ln q(γ0,ℓ)
= ln p(γ0,ℓ) + ⟨ln p(αℓ|γ0,ℓ)⟩q(αℓ) + const.

= (a− 1) ln γ0,ℓ − bγ0,ℓ + ln γ0,ℓ − γ0,ℓ⟨|αℓ|2⟩+ const.

= (ã0,ℓ − 1) ln γ0,ℓ − b̃0,ℓγ0,ℓ + const., (40)

with

ã0,ℓ = a + 1,

b̃0,ℓ = b + ⟨|αℓ|2⟩, (41)

where ⟨|αℓ|2⟩ = |µ0,ℓ|2 + Σ0,ℓ,ℓ. Therefore, q(γ0,ℓ) is the
probability density function of a Gamma distribution with the
shape parameter ã0,ℓ and rate parameter b̃0,ℓ, and the posterior
expectation of γ0,ℓ, which is used in (39), can be computed
as ⟨γ0,ℓ⟩ = ã0,ℓ/b̃0,ℓ.

In the M-step, we need to maximize the following objective
function with respect to θ and φ based on the update rule
in (22):

f = ⟨ln p(y, α0, γ0; θ, φ)⟩q(α0)q(γ0)

=
M∑

m=1

N∑
n=1

〈
−β∥ym,n −BDm,nα0∥22

〉
q(α0)

+ const.

= −
M∑

m=1

N∑
n=1

β∥ym,n −BDm,nµ0∥22

−
M∑

m=1

N∑
n=1

βtr(BDm,nΣ0DH
m,nBH) + const.. (42)

We observe that it is difficult to obtain an analytical optimal
solution to the above maximization problem, and therefore we
follow [51] and employ Newton’s method to maximize (42)
iteratively. Since there are two parameters to be estimated,

namely θ and φ, each time we fix one of them and perform
Newton’s iterations for the other. Next, we focus on the
update equation of AOA in each iteration, and the AOD can
be updated in a similar manner. For simplicity, we denote
ωℓ ≜ (2πd sin θℓ)/λ and ω ≜ [ω1, · · · , ωL]T . The estimate
of ω in the i-th iteration, denoted by ω(i), is updated as

ω(i) = ω(i−1) −
(
H(i−1)

)−1

w(i−1), (43)

where H(i−1) = ∂2f/∂ω∂ωT |ω=ω(i−1) and w(i−1) =
∂f/∂ω|ω=ω(i−1) are the Hessian matrix and gradient vector
of f evaluated at ω(i−1), respectively. The expressions of
∂2f/∂ω∂ωT and ∂f/∂ω are respectively given by

∂2f

∂ω∂ωT

= −
M∑

m=1

N∑
n=1

2βn2Re
{
diag

(
diag(µ0)

HDH
m,nBHum,n

)}
−

M∑
m=1

N∑
n=1

2βn2Re

×
{
diag(µ0)

HDH
m,nBHBDm,ndiag(µ0)

}
−

M∑
m=1

N∑
n=1

2βn2Re
{(

DH
m,nBHBDm,n

)
⊙ΣT

0

}
+

M∑
m=1

N∑
n=1

2βn2Re
{
Diag

(
DH

m,nBHBDm,nΣ0

)}
, (44)

and

∂f

∂ω
=

M∑
m=1

N∑
n=1

2βnIm
{
diag(µ0)Dm,nBT u∗m,n

}
+

M∑
m=1

N∑
n=1

2βnIm
{
Diag

(
DH

m,nBHBDm,nΣ0

)}
,

(45)

where um,n ≜ ym,n − BDm,nµ0. The derivations of (44)
and (45) are presented in the Appendix.

Remark 3: In the VEM framework, it is theoretically fea-
sible to merge the two stages and jointly estimate the delay,
AOA and AOD. This can be achieved by directly incorporating
the relationship of the path amplitudes across antennas in (2)
at the beginning, and moving AOA and AOD estimation to the
M-step of the delay estimation stage. However, this approach
requires estimating numerous fake AOA and AOD parameters
associated with the delay grid points that do not correspond
to true physical paths, leading to substantial computational
overhead and resource wastage.

Remark 4: In this paper, our primary focus is on the param-
eter estimation of specular multipath components, as described
by the channel model in (1). However, in indoor scenarios,
a large number of paths with non-resolvable parameters,
known as dense multipath components (DMCs), may also
exist. These components can no longer be represented using
Dirac delta functions in the delay domain. In such instances,
DMCs are commonly approximated as colored noise, with
their statistical properties determined by the power delay
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profile (PDP) [52], [53], [54], [55], [56]. Consequently,
an additional term representing the colored noise should
be incorporated into (14) when the DMCs are considered.
Nevertheless, it remains feasible to develop the multipath
parameter estimation algorithm within the VEM framework.
This involves modifying the likelihood functions in (25)
and (36) to account for the colored noise and potentially esti-
mating additional unknown parameters in the PDP model of
the DMCs [53]. It is worth noting that the algorithms proposed
in these works are mainly designed for UWB systems and
certain characteristics of the PDP of the DMCs may not be
directly applicable to narrowband WiFi systems.

In the AOA and AOD estimation stage, we iteratively
compute the posterior distributions of α0 and {γ0,ℓ}L

ℓ=1 based
on (38) and (40), respectively, and the point estimates of θ and
φ using Newton’s method. To start the iterations in Newton’s
method, we need a simple approach to obtain initial values
of the AOA and AOD. Let us take the AOA initialization
as an illustrative example, and the AOD can be initialized
in a similar manner. Based on (2), the ratio of the complex
amplitudes of a path on two adjacent receive antennas is

αm,n,ℓ

αm,n−1,ℓ
= exp

(
−j2πd sin θℓ

λ

)
. (46)

A coarse AOA estimate can be readily obtained from the phase
of the above amplitude ratio. The estimation accuracy can be
further improved by averaging over all m ∈ {1, · · · , M} and
n ∈ {2, · · · , N}. Moreover, a pre-iteration process is added
before the AOA and AOD initialization. Specifically, we fix
the number of paths and re-execute Algorithm 1 to refine the
estimates of the path amplitudes such that they can be better
utilized in AOA and AOD initialization. All the above steps
are summarized in Algorithm 2. The computational complexity
mainly arises from the matrix multiplication, which is of order
O(L2|K|). Since the number of paths L is typically small,
the complexity in the AOA and AOD estimation stage can be
considered negligible compared to the delay estimation.

Algorithm 2 Stage Two: AOA and AOD Estimation

1: Input: Measured CSI {ym,n}M,N
m=1,n=1, hyperparameters a

and b, and path amplitudes {αm,n,ℓ}M,N,L
m=1,n=1,ℓ=1 obtained

in the delay estimation stage.
2: Output: AOA estimate θ̂ and AOD estimate φ̂.
3: Initialization:
4: Set ⟨γ0,ℓ⟩ = a/b for all ℓ.
5: Carry out pre-iterations to refine {αm,n,ℓ}M,N,L

m=1,n=1,ℓ=1.
6: Initialize θ and φ using the amplitude ratio and average

the results over all m and n.
7: Iteration:
8: while stopping criterion not met do
9: Compute the posterior distribution of α0 using (38).

10: Compute the posterior distribution of {γ0,ℓ}L
ℓ=1

using (40).
11: Compute the AOA and AOD estimates using Newton’s

method.
12: end while

D. Derivation of CRLB

In this section, we derive the CRLB for the multipath
parameter estimation incorporating the effect of pulse shaping.
Since the CRLB characterizes the estimation performance of
continuous-valued parameters only, we assume the number of
paths is known in the derivations. Denote the collection of
unknown channel parameters by t = [αT

R, αT
I , τT , θT , φT ]T ,

where αR = Re{α0} and αI = Im{α0} are nuisance
parameters, and τ = [τ1, · · · , τL]T . Let t̂ denote an unbiased
estimate of t. Then, the mean squared error (MSE) matrix
satisfies the following inequality [57]:4

Ep(y;t)

[
(t̂− t)(t̂− t)T

]
⪰ J−1

t , (47)

where J−1
t is the CRLB matrix of t, and Jt is termed the

Fisher information matrix (FIM). The inequality indicates
that the mean squared error of each estimated parameter is
lower bounded by its corresponding diagonal entry in J−1

t .
Additionally, the FIM has the following form:

Jt =


JαR,αR JαR,αI JαR,τ JαR,θ JαR,φ

JαI,αR JαI,αI JαI,τ JαI,θ JαI,φ

Jτ ,αR Jτ ,αI Jτ ,τ Jτ ,θ Jτ ,φ

Jθ,αR Jθ,αI Jθ,τ Jθ,θ Jθ,φ

Jφ,αR Jφ,αI Jφ,τ Jφ,θ Jφ,φ

 . (48)

For any two subvectors ti, tj ∈ {αR, αI, τ , θ, φ}, the sub-
matrix Jti,tj

is expressed as

Jti,tj = −Ep(y;t)

[
∂2 ln p(y; t)

∂ti∂tT
j

]
. (49)

Using the Slepian-Bangs formula [58], Jti,tj
can be further

written as

Jti,tj = 2β

M∑
m=1

N∑
n=1

|K|∑
k=1

Re

{
∂y∗m,n,k

∂ti

∂ym,n,k

∂tT
j

}

= 2β

M∑
m=1

N∑
n=1

∑
k∈K

Re

{
∂h̃∗m,n,k

∂ti

∂h̃m,n,k

∂tT
j

}
, (50)

where h̃m,n,k is given in (6). Notably, (50) only involves
straightforward derivative calculations, and thus further details
are omitted for brevity.

E. Relevant Discussions on WiFi Sensing

An accurate estimate of multipath parameters not only
benefits WiFi-based sensing applications, but also suggests
an efficient representation of the CSI data. In practical WiFi
sensing scenarios, multiple WiFi devices are often deployed
at different locations to cooperatively perform sensing tasks.
In such cases, the measurement results of each WiFi device
should be reported to a central unit for further processing, a

4We do not incorporate the prior distribution of α0 and compute a Bayesian
CRLB, because the prior model is only used to enhance the sparsity and
facilitate the inference of the posterior distribution in the proposed algorithm,
but does not reflect the true distribution of the path amplitudes. Consequently,
the whole parameter vector t is treated deterministic, and the randomness of
this probabilistic model is fully characterized by p(y; t) in the subscript of
the expectation in (47).
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process known as feedback [59]. Selecting an appropriate feed-
back type, i.e., the data format that represents the measurement
results, requires careful consideration to ensure that sufficient
environmental information is preserved in the feedback data.
Several feedback types for IEEE 802.11bf in the sub-7 GHz
and 60 GHz bands have been detailed in [59]. Although the
full CSI matrix retains all the essential sensing information,
it introduces a substantial communication overhead during the
feedback process. To mitigate the volume of feedback data,
various alternative feedback types have also been proposed,
such as the partial CSI matrix, truncated CIR matrix, and
target-related parameters. Nevertheless, these feedback types
still pose a significant feedback overhead when the transceivers
are equipped with multiple antennas or are exclusively suited
for a specific sensing application.

Given the aforementioned limitations, an ideal feedback
type should be capable of reconstructing the entire CSI data
to support a wide range of sensing applications while keep-
ing a small data volume. Notably, the multipath parameters
estimated from our proposed algorithm, which only include
the delay, AOA, AOD, and amplitude of each path, satisfy
both of these requirements and offer a promising alternative
to conventional feedback approaches. Furthermore, as the
CSI is reconstructed solely from these pertinent multipath
parameters, the noise in the originally measured CSI can
be effectively suppressed. In essence, the proposed algorithm
yields a “cleaned” version of the CSI data, enhancing its
overall quality and reliability.

IV. SIMULATIONS

In this section, the performance of the proposed mul-
tipath parameter estimation algorithm is evaluated through
simulations. The carrier frequency of the WiFi system is
fc = 2.4 GHz. The system bandwidth is fs = 20 MHz,
corresponding to a sampling period T = 50 ns.5 Out of a
total number of K = 64 subcarriers, 52 are used for data/pilot
transmission with indices from 2 to 27 and from 39 to 64.
The length of the cyclic prefix is set to 32, which is the
same as the length of the delay-domain composite channel
R. We use a raised-cosine pulse function with the roll-off
factor ρ = 0.05, truncated to a nonzero duration of 16T .
In other words, Lp = 8. Both the transmitter and the receiver
are equipped with 3 antennas with the antenna spacing equal
to half the wavelength. The number of paths is 3 with the
parameters set as τ1 = 24 ns, τ2 = 65 ns, τ3 = 95 ns,
θ1 = 30◦, θ2 = 45◦, θ3 = 60◦, φ1 = 30◦, φ2 = 45◦, and
φ3 = 60◦. Note that the delay difference between any two
adjacent paths is smaller than the sampling period. The signal-
to-noise ratio (SNR) is defined as the ratio between the power
of the first path |α1|2 to the variance of the CSI measurement
error σ2. We generate the complex path amplitudes based on
the ray-tracing model described in [61]. Specifically, for ℓ ∈
{2, · · · , L}, the amplitude of αℓ is determined as Rℓ|α1|τ1/τℓ,
where we set R2 = R3 = 1 for simplicity, and the phase of

5The 20MHz WiFi channel has been used for sensing tasks in [6], [8],
[10], [19], and [60]. However, our algorithm can also be applied to systems
with larger bandwidths, such as fs = 40MHz or fs = 80MHz.

TABLE I
PERFORMANCE OF ESTIMATION OF THE NUMBER OF PATHS

αℓ is given by −2πfcτℓ. In the proposed multipath parameter
estimation algorithm, the grid resolution is set to Tg = 1ns.
The number of grid points is P = 100, corresponding to a
maximum delay spread of cPTg = 30m. The hyperparameters
in the Gamma distribution are set as a = b = 1 × 10−6, and
we initialize ⟨γp⟩ = a/b and ⟨γ0,ℓ⟩ = a/b in the two stages.
A threshold of η = 1×105 is chosen for deleting a basis vector
in delay estimation. Upon convergence, we set Lmax = 10 for
further delay selection. The number of iterations in Newton’s
method is chosen to be 100. For the VEM iterations in delay
estimation, we terminate them when either the relative change
of the estimated path amplitudes falls below 1× 10−4 or the
iteration count reaches 1000, and in AOA/AOD estimation,
we additionally check the relative change of the AOA and
AOD estimates.

Two benchmarks are considered in this paper: the SAGE
algorithm in [36] and its VB extension in [37]. Although
the formulation of the SAGE-related algorithms accounts
for the pulse shaping function, most studies that employ
them for WiFi sensing do not incorporate the pulse shape
knowledge [6], [19], [60]. In the following, we will provide
simulation results of the two algorithms with and without
pulse shape knowledge. In [37], the authors have demonstrated
that the VB-SAGE has the ability to adaptively estimate the
number of paths, in contrast to SAGE, which relies on a
predetermined value. Specifically, in VB-SAGE, if the SNR
of a path is smaller than a threshold, then the path is regarded
as noise and discarded. However, the SNR threshold is a
function of delay and should be determined from the PDP of
the channel. This is not practical in a WiFi system in which the
absolute delay information is lost. In light of this challenge,
we input the ground truth of the number of paths in both
SAGE and VB-SAGE. In addition, we use a stopping criterion
for the two benchmarks similar to that for our algorithm by
checking if either the relative change of all parameters is
smaller than 1×10−4 or the number of iterations reaches 1000.
All the results presented below are obtained by averaging over
2000 simulations. The computational complexities of SAGE
and VB-SAGE are both O(ILMN |K|(Pτ +Pθ +Pφ)), where
I is the number of iterations, Pτ = 100, Pθ = 180 and
Pφ = 180 are the sizes of the sets of the candidate values
for delay, AOA and AOD, respectively. Note that we use a
grid search method to find the optimal values of the multipath
parameter estimates in each iteration, in which the delay
resolution is set to 1 ns and the AOA/AOD resolution is set
to 1◦. We remark that when a fast implementation is adopted
for our proposed algorithm, its computational complexity is
expected to be on par with that of SAGE and VB-SAGE.

In Table I, we show the probability of correct estimation
and the mean absolute error (MAE) of the number of paths
obtained by our proposed algorithm. It can be observed that
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Fig. 2. Comparison of RMSE of the relative delay between the first path
and the second path.

Fig. 3. Comparison of RMSE of the AOA of the first path.

Fig. 4. Comparison of RMSE of the AOA of the second path.

our algorithm can correctly determine the number of paths.
Figs. 2–6 compare the root MSE (RMSE) for the multipath
parameter estimation using different algorithms, with each
figure corresponding to the performance of a specific param-
eter. We note that we show the RMSE of the relative delay

Fig. 5. Comparison of RMSE of the AOD of the first path.

Fig. 6. Comparison of RMSE of the AOD of the second path.

between the first and the second paths in Fig. 2 since the
absolute delay information is lost after packet detection. For
the AOA and AOD estimation, we plot the RMSE of the
first and the second paths separately. In each trial of the
proposed algorithm, RMSE is calculated only when the num-
ber of paths is larger than 1. The figures clearly demonstrate
that the proposed algorithm outperforms the two benchmarks
and approaches the CRLB. For SAGE and VB-SAGE, they
achieve inferior performance due to the successive interference
cancellation technique used in the initial stage. Specifically,
the algorithm initially treats the entire CSI as a single path
and estimates its delay, AOA, and AOD. Then, the estimated
path is subtracted from the CSI and the estimation process
continues for subsequent paths until a stopping criterion is
met. However, this sequential estimation process can lead to
accumulated errors, where inaccuracies in one path estimation
propagate to subsequent paths. This limitation has been pre-
viously noted in [62]. This poor initialization often results in
the algorithm being trapped in local optima, hindering con-
vergence to an accurate estimate of the multipath parameters.
Consequently, in [36] and [63], alternative approaches such
as subspace-based methods have been suggested to mitigate
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TABLE II
ESTIMATION PERFORMANCE WITH DIFFERENT VALUES OF Lmax

this initialization issue. Furthermore, we also find through the
simulations that this phenomenon is more evident for delay
estimation when the pulse shaping function is considered and
when the multipath parameters are closely spaced. In the
specific context of WiFi sensing, the pulse shapes of different
paths exhibit significant overlap in the delay domain, rendering
it difficult to distinguish each individual path from a superpo-
sition of multiple pulses. In addition, it can be seen that the
estimation errors of VB-SAGE increase with the SNR when
the pulse shaping function is considered. This behavior occurs
because the poor initialization issue becomes less prominent
in low-SNR conditions. In such cases, the noise acts as a per-
turbation, aiding the parameter estimates to “escape” from the
local optima. Although the performance of SAGE/VB-SAGE
is expected to improve when the subspace-based methods
are used for initialization, the implementation will result
in drastically increased computational complexity, especially
when the steering vectors are designed in a stacked manner
to jointly estimate the delay, AOA, and AOD [5], [20]. As a
result, we do not employ these methods for initialization in
the simulations.

In Table II, we assess the robustness of the multipath
estimation algorithm to the selection of Lmax. Specifically,
we show the RMSE of relative delay estimation, along with the
probability of correct estimation and the MAE of the number
of paths with Lmax = 10, Lmax = 15, and Lmax = 20. It can
be observed that our algorithm is not sensitive to the value
of Lmax. In Table III, we show the estimation performance
with and without error in the roll-off factor, where the roll-off
factors used in the proposed algorithm are ρ̃ = 0.045, ρ̃ =
0.05, and ρ̃ = 0.055. Notably, our algorithm achieves similar
performance in all three scenarios.

In Fig. 7, we compare the normalized RMSE (NRMSE)
of CSI reconstruction using different algorithms, where the
error is calculated in reference to the noiseless CSI instead
of the measured CSI. We can observe that the NRMSE of
the proposed algorithm is lower than that of SAGE and VB-
SAGE. This result suggests an effective representation of CSI
data using only a small number of multipath parameters, which
can significantly reduce the feedback overhead in cooperative
sensing scenarios.

TABLE III
ESTIMATION PERFORMANCE WITH DIFFERENT VALUES OF ρ̃

Fig. 7. Comparison of NRMSE of CSI reconstruction.

V. CONCLUSION AND FUTURE WORK

This paper presented a pulse shape-aided framework for
estimating multipath parameters, including delay, AOA and
AOD of each path, in MIMO WiFi channels. By accounting
for the channel leakage effect (i.e., a single propagation path
can manifest itself as multiple taps in the delay domain),
the proposed approach can be used for fine-grained WiFi
sensing. Specifically, we leveraged the knowledge of the pulse
shape and formulated a group sparse recovery problem using
a dictionary matrix composed of discretized pulses shifted
by different delays. We proposed a two-stage method using
the VEM algorithm to first estimate the multipath delays,
followed by the estimation of the AOAs and AODs. Simulation
results have shown that our proposed algorithm can accurately
estimate the channel parameters and reconstruct the CSI data.

A limitation of this study is that in practice, pulse shaping is
not always implemented via a simple raised-cosine filter, and
its function is not readily available to WiFi users. In our forth-
coming research, we aim to employ learning-based methods
to estimate the pulse shaping function of real-world WiFi sys-
tems. Additionally, we plan to apply the multipath parameter
estimation algorithm in more complex sensing scenarios.
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APPENDIX
DERIVATION OF (44) AND (45)

Denote

f1,m,n ≜ ∥ym,n −BDm,nµ0∥22, (51)

and

f2,m,n ≜ tr(BDm,nΣ0DH
m,nBH). (52)

First, we compute ∂f1,m,n/∂ω and ∂2f1,m,n/∂ω∂ωT .
Observing that

um,n = ym,n −BDm,nµ0 ≜ uR,m,n + juI,m,n, (53)

where uR,m,n = Re{um,n}, and uI,m,n = Im{um,n}, we can
rewrite f1,m,n as

f1,m,n = ∥um,n∥22 =
∑
k∈K

(
u2

R,m,n,k + u2
I,m,n,k

)
. (54)

Hence, for ℓ ∈ {1, · · · , L},

∂f1,m,n

∂ωℓ
= 2

∑
k∈K

(
uR,m,n,k

∂uR,m,n,k

∂ωℓ

+uI,m,n,k
∂uI,m,n,k

∂ωℓ

)
. (55)

Since

uR,m,n,k = Re

{
ym,n,k −

L∑
ℓ=1

Bk,ℓdm,n,ℓµ0,ℓ

}
, (56)

where dm,n,ℓ is defined in (33), we have

∂uR,m,n,k

∂ωℓ
= −nIm {Bk,ℓdm,n,ℓµ0,ℓ} , (57)

In a similar fashion, we can obtain

∂uI,m,n,k

∂ωℓ
= nRe {Bk,ℓdm,n,ℓµ0,ℓ} . (58)

Substituting (57) and (58) into (55), we have

∂f1,m,n

∂ωℓ
= −2nIm

{∑
k∈K

Bk,ℓu
∗
m,n,kdm,n,ℓµ0,ℓ

}
= −2nIm

{
bT

ℓ u∗m,ndm,n,ℓµ0,ℓ

}
, (59)

where bℓ is the ℓ-th column of B. Since (∂f1,m,n/∂ω)ℓ =
∂f1,m,n/∂ωℓ, we obtain

∂f1,m,n

∂ω
= −2nIm

{
diag(µ0)Dm,nBT u∗m,n

}
. (60)

Based on (55), we can compute the second-order derivative as

∂2f1,m,n

∂ωℓ∂ωℓ′

= 2
∑
k∈K

(
∂uR,m,n,k

∂ωℓ

∂uR,m,n,k

∂ωℓ′
+

∂uI,m,n,k

∂ωℓ

∂uI,m,n,k

∂ωℓ′

)
+ 2

∑
k∈K

(
uR,m,n,k

∂2uR,m,n,k

∂ωℓ∂ωℓ′
+ uI,m,n,k

∂2uI,m,n,k

∂ωℓ∂ωℓ′

)
.

(61)

When ℓ ̸= ℓ′, the second summation on the right-hand side
of (61) becomes zero, and then

∂2f1,m,n

∂ωℓ∂ωℓ′
= 2n2Re

{
(dm,n,ℓµ0,ℓbℓ)H(dm,n,ℓ′µ0,ℓ′bℓ′)

}
.

(62)

When ℓ = ℓ′,

∂2f1,m,n

∂ω2
ℓ

= 2n2∥µ0,ℓbℓ∥22 + 2n2Re
{
bT

ℓ u∗m,ndm,n,ℓµ0,ℓ

}
.

(63)

Combining (62) and (63), we have

∂2f1,m,n

∂ω∂ωT
= 2n2Re

{
diag(µ0)

HDH
m,nBHBDm,ndiag(µ0)

}
+ 2n2Re

{
diag

(
diag(µ0)

HDH
m,nBHum,n

)}
.

(64)

Next, we compute ∂f2,m,n/∂ω and ∂2f2,m,n/∂ω∂ωT .
We observe that f2,m,n can be written as

f2,m,n =
L∑

ℓ=1

L∑
ℓ′=1

Σ0,ℓ′,ℓ(dm,n,ℓbℓ)H(dm,n,ℓ′bℓ′). (65)

Therefore, we can obtain

∂f2,m,n

∂ωℓ
= −2nIm

{
L∑

ℓ′=1

Σ0,ℓ′,ℓ(dm,n,ℓbℓ)H(dm,n,ℓ′bℓ′)

}
= −2nIm

{
(dm,n,ℓbℓ)HBDm,nξℓ

}
, (66)

where ξℓ is the ℓ-th column of Σ0. Since (∂f2,m,n/∂ω)ℓ =
∂f2,m,n/∂ωℓ, we have

∂f2,m,n

∂ω
= −2nIm

{
Diag

(
DH

m,nBHBDm,nΣ0

)}
. (67)

To compute the second-order derivative ∂2f2,m,n/∂ωℓ∂ωℓ′ ,
we first consider the case when ℓ = ℓ′

∂2f2,m,n

∂ω2
ℓ

= 2n2Σ0,ℓ,ℓ∥bℓ∥22

− 2n2Re

{
L∑

ℓ′=1

Σ0,ℓ′,ℓ(dm,n,ℓbℓ)H(dm,n,ℓ′bℓ′)

}
= 2n2Σ0,ℓ,ℓ∥bℓ∥22 − 2n2Re

{
(dm,n,ℓbℓ)HBDm,nξℓ

}
.

(68)

Then, for ℓ ̸= ℓ′, we have

∂2f2,m,n

∂ωℓ∂ωℓ′
= 2n2Re

{
Σ0,ℓ′,ℓ(dm,n,ℓbℓ)H(dm,n,ℓ′bℓ′)

}
. (69)

Combining (68) and (69), we obtain

∂2f2,m,n

∂ω∂ωT
= 2n2Re

{(
DH

m,nBHBDm,n

)
⊙ΣT

0

}
− 2n2Re

{
Diag

(
DH

m,nBHBDm,nΣ0

)}
. (70)

By noting that f = −
∑M

m=1

∑N
n=1 β(f1,m,n + f2,m,n) +

const. and combining (60), (64), (67) and (70), we arrive
at (44) and (45).
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